
COMPUTER SCIENCE 725 2016SC 1

Subversive-C: How reasonable are the assumptions?
James Cooper

Department of Computer Science
University of Auckland

Email: jcoo092@aucklanduni.ac.nz

Abstract—A new form of code re-use attack named Subversive-
C, specific to the Objective-C language, and inspired by Counter-
feit Object-Oriented Programming, was introduced by Lettner
et al. in a conference paper published in 2016. In this paper,
the authors described an attack that exploits the dynamic
messaging system of Objective-C, and which could potentially
give an attacker the ability to execute arbitrary code on the
attacked computer. The authors then described a defence against
that attack, using message authentication codes applied to the
Objective-C runtime. In describing both the attack and defence
however, the authors make a number of assumptions about the
capabilities of the attacker, and other defensive measures in
place. This paper will examine some of those assumptions as
they pertain to the attack, attempt to assess how reasonable the
assumptions are with regards to the attack, with a view to the
strength or not of the attack.

Index Terms—Objective-C, Subversive-C, COOP, ASLR, CFI,
DEP, XoM, Information leaks, Memory corruption vulnerabilities

I. INTRODUCTION

IN A conference paper [1] published in June 2016, Lettner
et al. described a code re-use attack inspired by Counterfeit

Object-Oriented Programming (COOP) [2] that specifically
targets the architecture of the Objective-C language, a lan-
guage primarily used in applications created for deployment
on Apple’s OS X and iOS operating systems.1 Both Lettner’s
so-called ’Subversive-C’ attack as well as COOP are recent
variations on Return-Oriented Programming (ROP), a field of
techniques used to take control of programs or systems without
injecting large new bodies of code. Subversive-C and COOP
are interesting in that they rely on underlying features of a
specific language (C++ for COOP), which makes these attacks
less portable and broadly applicable, but provides avenues
of attack that would not necessarily be available in more
broadly targeted ROP attacks, which typically work at the
Assembly language level. While the use of specific higher-
level languages would appear to limit the applicability of the
attacks, it is the case however that both C++ and Objective-
C are in common use today, meaning that there will be
many popular applications installed on users’ systems that are
vulnerable to these particular attack types.

After describing their Subversive-C attack, Lettner et al.
then described a method to protect against the attack, one
which could be implemented around pre-existing programs
without requiring re-compilation or access to the source

1GNU also provides Objective-C support through their GNU Compiler
Collection - https://gcc.gnu.org/onlinedocs/gcc/Objective-C.html

code. This security measure is based upon using a message
authentication code (MAC) with data/instructions that are
considered sensitive and in need of securing, with the MAC
being computed using a secret key and the contents of the
sensitive data. An attacker wishing to modify said data would,
in theory, have to know both the secret key, as well as the
contents of the data being modified. The defence will not be
considered in detail any further in this paper however.

In describing both the attack and the defence, some key
assumptions are made. It is not clear if those assumptions
are entirely reasonable or relevant, or indeed if they are not
potentially contradictory. This paper will critically examine
each of the assumptions made, for the paper overall and those
made specifically for the attack, and consider whether they are
reasonable assumptions that have an impact on the strength of
the attack.

A. Relevance of attack

Objective-C has now been superseded by Apple’s relatively
recent new programming language, Swift. It is likely however
that many popular programs that are in common use today, as
well as large parts of the main Apple libraries used across their
operating systems, are still written partially or perhaps even
entirely in Objective-C, so this attack is still relevant. Both
languages work on the same runtime, and are interoperable [3,
ch. 20], so it is quite plausible that a program implemented in
Swift may be vulnerable, at least to some extent, to the same
attacks as one written in Objective-C.

B. Technical knowledge

While efforts to explain relevant technical concepts will be
made, this paper assumes some knowledge of the terminology
of ROP and related fields, for the sake of brevity. The reader is
referred to [4] for a good introduction to ROP and associated
concepts in general, as well as [5] for a recent overview of
the wider field of software attacks.

II. GENERAL ASSUMPTIONS FOR THE PAPER

Lettner et al. list some general assumptions made for the
paper in Section Three. These assumptions must be examined
critically, because the remainder of the paper rests upon them.
It is not immediately clear that these assumptions are all
valid, nor that they are not potentially contradictory with other
assumptions made for the attack (sect. III).

Four general assumptions are made that cover the entire
paper [1, s. 3]:



COMPUTER SCIENCE 725 2016SC 2

1) The attacker can read and write data memory pages,
specifically the internal data structures of the Objective-
C runtime. Address Space Layout Randomisation is in
place however.

2) Data Execution Prevention (DEP) prevents simple code
injection attacks

3) The runtime is protected with fine-grained code random-
ization, and an implementation of Execute-only Memory
(XoM) such as Readactor [6] or Execute-No-Read [7]

4) The ”C parts of the application and runtime are protected
using appropriate mitigations (CFI, randomization, or
equivalent defenses).”

These assumptions are asserted to be reasonable, and to
match the capabilities of a real-world attacker. None of them
are meant to be a ’magic bullet’ to stop attackers entirely, as
Subversive-C itself demonstrates. They are presumably meant
to be a reasonable and realistic list of defensive techniques
for a defender to work with, or an attacker to overcome.
Nevertheless, they deserve a critical appraisal as they appear
in the paper.

A. Read & write access for the attacker

The basic part of this assumption is fairly self-evident. To
carry out any sort of code manipulation attack, an attacker
will need to be able to read memory to find a location for
their purposes, either somewhere they can inject code into,
or code they can re-purpose, and then be able to write to
inject said code, or modify a return address or in some fashion
corrupt the program. On the face of it, having read-write access
to memory appears reasonable, if just because without it the
attacker likely will be entirely ineffectual, because they cannot
corrupt anything.

The proposed attack actually targets individual programs,
but the authors state an attacker requires read-write access
to the data structures of the Objective-C runtime in order to
corrupt them. Subversive-C however targets specific applica-
tions and exploits vulnerabilities in those however, so it is not
immediately obvious why the attacker needs write access to
the runtime specifically.

Address Space Layout Randomisation (ASLR) is also as-
sumed to be in use upon the target system, making such reads
and writes more difficult. Davi and Sadeghi [4, p. 56] define
ASLR as: ”In order to defend against code-reuse attacks, ad-
dress space layout randomization randomizes the base address
of code and data segments per execution run. Hence, the
memory location of code that the adversary attempts to use
will reside at a random memory location.”

ASLR prevents simplistic attempts at code-reuse attacks by
situating the relevant code in different areas of memory at
each run-time. It is true however that ”all ASLR solutions
are vulnerable to memory disclosure attacks ... where the
adversary gains knowledge of a single runtime address and
uses that information to re-enable code-reuse in her playbook
once again.” [4, p. 56], or, stated alternatively ”convential
ASLR only changes the base address of the entire code
segment and hence a single leaked pointer might uncover
all the [attack code’s relevant memory] addresses since the

relative addresses between them did not change.” [7, p. 1344]
For example, Snow et al. [8] have demonstrated that many
ASLR schemes can be overcome effectively with ’just-in-time’
code re-use. It is reasonable to expect that some form of ASLR
is in place, but it may be the case that it provides only limited
protection against the attack.

B. Data Execution Prevention

DEP is a long-standing method to prevent simple code
injection attacks. Earlier attacks commonly exploited stack
vulnerabilities to place executable code within a program’s
data, and then ran that code. Normal non-malicious code does
not execute from the stack, so all that was needed to prevent
these attacks was to prevent code from being run from within
the stack. Memory pages are separated into code and data
pages, and can only either be written to or executed, but not
both, preventing code from being executed from the stack, as
well as helping prevent run-time overwrites of the legitimate
code in memory. For this reason, DEP is also commonly
known as ’Writable XOR Executable’, and is supported by all
known major modern operating systems and processors. This
assumption can be considered entirely reasonable, because of
the presence and use of DEP on all major current operating
systems.

C. Code randomization and execute-only memory

Lettner et al. further assume that the Objective-C ”runtime is
protected using fine-grained code randomization” as described
in [5] (see also [9] for an expanded discussion of the same
topics), for example, Marlin [10]. In [5] various mechanisms
for code randomization are discussed however, and it is not
clear which ones are referred to, so it is difficult to assess
this aspect of the assumption further. Note that ASLR can
be considered a form of code randomization, because it
randomizes the position of code in memory, as well as the
relative positions for different code blocks with respect to each
other. Many other forms of randomization are possible though.

Different points at which diversity can be introduced are
also discussed in [5], including at implementation (code writ-
ing) time, compile time, program installation time and program
load time. Again, Lettner et al. do not state when they they
anticipate code randomization to have occurred, but given
that the Objective-C runtime is written by Apple, and would
already be built and installed on each device by the time the
end user starts to run programs using it, the most reasonable
assumption is that randomization occurs at program load time,
because randomisation performed any earlier could prove to
be trivial to bypass for any attacker who is willing to spend
time probing for weaknesses before launching their attack.

Along with code randomization, it is also assumed that
a form of eXecute only Memory (XoM) such as Readactor
[6] or Execute-No-Read (XnR) [7] is in use on the system
under attack. The basic principle behind XoM is that code
memory cannot be read normally as if it were data memory.
Instead, it can only be read by the processor for the pur-
poses of executing said code. This form of protection assists
in preventing attackers from locating particular functions in



COMPUTER SCIENCE 725 2016SC 3

memory, which stymies attempts to find information leaks (see
sect. III-C). Readactor does rely upon features only found in
modern processors and releases of operating systems though,
while XnR is as-of-yet (to the best of the author’s knowledge)
not supported by hardware at all.

Crane et al. [11] suggest that COOP2 overcomes XoM,
because it targets an element of the program at run-time which
is not randomised and protected, specifically the tables holding
the memory addresses of C++ virtual functions. The similar
nature of Subversive-C to COOP indicates that XoM may be
of little help in protecting against the attack. Crane et al.
present an improved form of XoM, Readactor++, to counter-
act COOP, but Lettner et al. consider it unhelpful in protecting
against Objective-C based attacks [1, p. 219] because of the
dynamic nature of the messaging system in Objective-C.

It appears to be reasonable to assume that these defences
are in place, though it is not entirely clear what forms of code
randomization are expected.

D. Control Flow Integrity

Davi and Sadeghi [4, p. 27] define Control Flow Integrity
(CFI) as ”CFI offers a generic defense against code-reuse
attacks by validating the integrity of a program’s control-
flow based on a predefined [Control Flow Graph] at runtime.”
A control flow graph (CFG) is, broadly speaking, a graph
mapping the valid jump and branch instruction destinations
within a program. CFI, in theory, protects against code-
reuse attacks by preventing an attacker from redirecting the
program’s operation to their chosen code for the attack, when
that chosen code would not normally be executed in that order
according to the CFG. CFI is supported by modern operating
systems and compilers.3 It has been shown however that CFI
is not necessarily effective at preventing code-reuse attacks
[12]. It also seems possible that, if the CFI schemes used by
compilers are ineffective or defective in some way, attackers
may know of such weaknesses and potential methods to bypass
them. Even partially broken CFI seems likely to be of more
use than no CFI at all though.

This assumption is essentially an assumption that both the
Objective-C runtime as well as the program to be attacked
have both been compiled with CFI functionality enabled in the
compiler. It is unclear whether CFI is in use for the Objective-
C runtime, but given the critical importance and centrality of
the runtime to every Objective-C program, it seems reasonable
to assume that, insofar as possible, security measures such as
CFI are in place. Apple is surely unlikely not to use such
security features where possible.

It further seems reasonable to assume that all recently
compiled programs will have taken advantage of CFI support

2It should be noted that, while there are considerable similarities between
COOP and Subversive-C, they do differ in the basis of the attacks. Both
exploit a specific element of their respective language’s operation, namely the
C++ vtables for COOP and the dynamic message dispatch functionality of
Objective-C for Subversive-C. They could arguably be seen as the equivalent
to each other for each language, but the attacks are not directly transferable.

3For example, Windows 10 and MSVC++: https://msdn.microsoft.com/en-
us/library/windows/desktop/mt637065(v=vs.85).aspx. It is available
to developers using Objective-C on Apple OSes via Clang:
http://clang.llvm.org/docs/ControlFlowIntegrity.html

in the compiler, although older programs may well have been
compiled before CFI was integrated into compilers. Depending
on the exact mechanics of patching, it may or may not be
the case that an older program that has been patched would
use CFI, since the base program could have been compiled
prior to the introduction of CFI. Possibly the more recently
patched parts of the program could take advantage of CFI,
but older, untouched components do not. Ultimately it would
presumably depend on the exact implementation of the CFI
scheme and the patching system. All that being said, it might
well be the case that recent patches for an older program
would have eliminated the memory corruption vulnerabilities
(see sect. III-B) that attackers would rely on anyway, and thus
the presence of CFI could be a moot point.

Due to the fact that taking advantage of CFI to protect one’s
programs from having their control flow hijacked is as easy to
do as setting a compiler flag, it seems reasonable to assume
that at least most current security-concious programs deploy
it in some form. Thus, it seems reasonable overall to assume
that CFI of some form is in use to protect both the runtime
and the target program.

III. ASSUMPTIONS UNDERLYING SUBVERSIVE-C

Three assumptions are explicitly made for this attack, stated
as requirements in [1, s 4.2]. They are:

1) Availability of the AppKit GUI library on the system,
as well as its use by the target program

2) Access to a memory corruption vulnerability allowing
an attacker to place data in the target process, as well
as overwrite a pointer to an Objective-C instance used
during execution

3) An information leak sufficient to disclose the memory
location of the inserted data and the instance pointer that
is overridden with the attacker’s counterfeit object

A. Availability of AppKit

AppKit is a library in Mac OS X responsible for providing
graphical user interface functionality.4 The authors require the
presence of AppKit as well as its use by the target program
because they use the functions present in it for their attack
gadgets. It is likely to be present on every up-to-date Apple
computer. Furthermore, it is probable that any Mac program
with a GUI will make use of the library. Moreover, because
a very large number of current programs for Mac will use
AppKit for their GUI, it is unlikely that significant changes
will be made to the API in the near future. As a result most
current programs, and likely many currently being developed,
will use the same functions as those relied upon by the
attackers. Thus, this assumption is reasonable.

B. Access to a memory corruption vulnerability

Memory Corruption Vulnerabilities (MCVs) [13] are a
central aspect of most, if not all, modern code re-use attacks,
and ”have plagued software written in low-level languages for

4https://developer.apple.com/reference/appkit



COMPUTER SCIENCE 725 2016SC 4

more than three decades.” [11, p. 243] ”This ... covers a large
variety of techniques that use programming errors to achieve
the same goal: changing the memory contents of the target
program.” [9, sect. 2.1.1] A quick search on Google Scholar
for ’memory corruption vulnerability’, limiting the results to
only 2015 and 2016, returned over 6,000 results, with 29 of the
first 30 being on this topic. It is a much bigger topic than just
this paper, and indeed Lettner et al. appear to assume that their
readers are already familiar with the concept, as they make no
attempt to explain it. Fundamentally, it means exploiting a bug
that allows the attacker to modify the contents of memory in
a way that lets them alter a program’s operation to carry out
the tasks desired by the attacker.

As such, this assumption is required by the paper to en-
sure that the attacker can carry out the Subversive-C attack.
For Subversive-C, an attacker uses the MCV to place some
counterfeit objects into the target program’s memory. Those
counterfeit objects have been pre-written to suit the attacker’s
purpose, and will execute a series of illegitimate calls to
legitimate functions, in order to achieve an end goal, e.g.
executing a call to system() on a Linux computer, the example
presented by Lettner et al.

This assumption, or rather the broad manner in which it
is stated, arguably weakens Subversive-C though. A relevant
MCV is merely assumed to exist, and to be exploitable by
the attacker in a useful fashion. It is likely to be the case
that a large proportion of modern popular programs written
in Objective-C have MCVs in them, and some of those may
potentially prove useful to an attacker, but that is only the
start of the attack. It is a laborious and technical process to
actually find and take advantage of a vulnerability (see for
example [14]).

Subversive-C is however presented only as a proof-of-
concept attack, and so it is not necessarily required that it
be demonstrated working on a publicly used program. Such
a premise lowers the bar that must be overcome for the
purposes of the paper, but it does nothing to aid the strength
of the attack. An attack that works in ideal circumstances
doesn’t necessarily work well in any other circumstances. The
necessity of a MCV is standard to many papers (e.g. [8], [13]),
but Lettner et al. merely assume one’s existence. This leaves
the overall strength of the attack weaker, as arguably the core
pillar the efficacy of the attack rests on is hand-waved into
place.

Assuming the existence of an MCV would become a smaller
weakness in the attack, should the nature of the MCV be
described in greater detail. The paper simply states, ”... we
require a program that contains a memory corruption vulner-
ability allowing an attacker to place data in the target process
as well as overwrite a pointer to an Objective-C instance used
during execution.” Presumably this was phrased in very broad
terms to show that Subversive-C has wide applicability, or
perhaps to avoid providing inspiration to would-be attackers
reading the article, or maybe simply because Lettner et al. did
not wish to spend any of their paper’s space on what they
considered an uncontroversial point. Regardless, by leaving
the nature of the MCV entirely undefined beyond describing
the overall concept of what it would enable, less evidence is

presented that Subversive-C is a realistic attack than might be
otherwise.

This is shown to be a gap in the paper’s coverage, by the
fact that other papers have exploited known vulnerabilities
to demonstrate the attack and/or defence, for example [2],
[15]. These vulnerabilities likely had already been patched by
the time the other papers were published, but by using real-
world attacks, extra credence is lent to the idea that they are
legitimate threats. It is true that the results of performance
tests with real-world programs are shown later in the paper,
however those tests do not judge the strength of the attack.
They are merely benchmarks for the defence’s efficiency.

Considering how critical to the attack a MCV is, it is
perhaps unsurprising that one is assumed to be available for
Subversive-C. Considering also that MCVs are covered in
great detail elsewhere, and the purpose of the paper was to
introduce Subversive-C, it is perhaps also unsurprising that
the topic was not explored further. A useful MCV is a major
assumption however, and simply assuming that one is available
without further detail arguably weakens the foundations that
Subversive-C rests upon.

It is quite possible that there exist MCVs in any given
program, but the ability of any given attacker to find and
exploit one that is relevant to their goals is a different, and
much less certain, matter. Considering that [1] was about
introducing a defence against a potential attack, it is perhaps
unsurprising that the attack appears to have some weakness,
because the authors’ focus was likely on the defence against
those potential attacks. A weak attack does a disservice to the
presentation of a defence though. A defence that only defends
against a weak attack that relies upon ideal circumstances
does not necessarily appear to be a particularly strong defence
(although note however that the defence proposed does not
claim to prevent the existence of MCVs, just prevent their
exploitation via the dynamic messaging system of Objective-
C). That being said, many programs undergo regular analysis
for MCVs by a wide variety of parties, and so it is likely a
matter of time before an MCV is located by some party that
would be useful to Subversive-C. Therefore, this assumption is
reasonable, albeit it is one that ultimately does precious little
to reassure the strength of Subversive-C in its own right.

C. Sufficient information leak

Lettner et al. state ”to reliably bypass ASLR, we ... require
an information leak to disclose the position of the data injected
and the location of the instance pointer we override with our
own counterfeit object.” In other words, an information leak
is necessary in order for the attacker to use the result of their
exploiting an MCV. It seems that an attacker can potentially
exploit an MCV without knowing where in memory their
attack affected, and thus they must also use the information
leak to locate where their attack took place, in order to fully
carry it out successfully - if nothing else, they need a base
memory address to work from, and randomization may also
make locating the AppKit functions used in exemplar attack
more difficult. As with MCVs, information leaks are a broad
topic with much written on them. Seibert et al. [16] present a



COMPUTER SCIENCE 725 2016SC 5

number of potential methods for leaking information. Lettner
et al. give no indication as to what form of information leak
they expect to use, simply that there is one they can take
advantage of, but Seibert et al. demonstrate that one can use a
MCV both to corrupt memory in preparation for a ROP-style
attack, and for a useful information leak. Most likely it is a
fault-analysis attack [16, sect. 3.1].

Furthermore, in the general assumptions Lettner et al. make
(sect. II-C), they state that along with ASLR they assume that
the system is using a form of XoM ”that prevents attackers
from using information leaks to retrieve the code of the
runtime,” [1, sect. 3], an assumption they rely on for the
defence. They then appear to assume with this information
leak assumption that they have the capacity to take advantage
of information leaks, which at first glance appears to be an
outright contradiction between assumptions. It appears to be
the case however that they assume that the runtime is protected
by XoM, and not the target program. They do not explain why
the runtime is protected, and the target program not though. It
is not an immediately obvious distinction when first reading,
and the paper would have done well to highlight it more, so
that readers do not perceive a contradiction that is not there.

If assumption two is held to be reasonable, then [16]
suggests that this assumption may well also be reasonable.
[1] would have been improved by an explicit mention of this
fact though. Such an omission is presumably due to the target
audience of [1], being technical experts familiar with ROP and
related material.

IV. CONCLUSION

The four assumptions made for the paper as a whole are
reasonable, although more detail on the form of code random-
ization assumed to protect the program would have been ben-
eficial. The fact that these assumptions largely strengthen the
defences in place on the target raise the bar that Subversive-
C must get over lends strength to the attack. Two of the
three assumptions made specifically for the attack are weaker
however, though it is true that if one has one of them, the
other may perhaps be available too without much greater effort
required. The assumption that the AppKit library is available
and in use is reasonable, but the assumptions regarding a
memory corruption vulnerability and information leak are less
so. They are both necessary for the attack to be carried out, but
they are major assumptions that are not explored in the paper.
It is likely that there is a memory corruption vulnerability
somewhere in most significant programs, but an attacker being
able to find and exploit one is less certain.

That being said, [1] is a paper about a defence against a
proof-of-concept attack, not a particular attack scenario. The
authors may have felt that the assumptions are reasonable with-
out further explanation, as both assumptions are reasonably
common in some form in academic papers. Or perhaps they
did not wish to spend time on a topic that is covered elsewhere,
or maybe because this is a proof-of-concept attack, they felt
that justifying the assumptions was a poor use of the space
available to them in the paper.

Ultimately, simply assuming a MCV and an information
leak into place does little to support the strength of Subversive-

C, and could perhaps even be seen to undermine it as a realistic
attack method, but there are credible explanations as to why no
further detail or explanation was provided. Subversive-C still
stands as a potential form of attack on Objective-C programs if
the right circumstances coalesce, and developers working with
Objective-C would do well to bear the possibility in mind.

REFERENCES

[1] J. Lettner, B. Kollenda, A. Homescu, P. Larsen, F. Schuster,
L. Davi, A.-R. Sadeghi, T. Holz, and M. Franz, “Subversive-
c: Abusing and protecting dynamic message dispatch,” in
2016 USENIX Annual Technical Conference (USENIX ATC
16). USENIX Association, Jun 22-24 2016, pp. 209–221.
[Online]. Available: https://www.usenix.org/conference/atc16/technical-
sessions/presentation/lettner

[2] F. Schuster, T. Tendyck, C. Liebchen, L. Davi, A. R. Sadeghi, and
T. Holz, “Counterfeit object-oriented programming: On the difficulty
of preventing code reuse attacks in c++ applications,” in 2015 IEEE
Symposium on Security and Privacy, 2015, pp. 745–762.

[3] W. Malik, Learn Swift 2 on the Mac. Springer Science & Business
Media, 2015. [Online]. Available: http://dx.doi.org/10.1007/978-1-4842-
1627-9

[4] L. Davi and A.-R. Sadeghi, Building secure defenses against
code-reuse attacks. Cham: Springer, 2015. [Online]. Available:
http://link.springer.com/10.1007/978-3-319-25546-0

[5] P. Larsen, A. Homescu, S. Brunthaler, and M. Franz, “Sok: Automated
software diversity,” in 2014 IEEE Symposium on Security and Privacy,
2014, pp. 276–291.

[6] S. Crane, C. Liebchen, A. Homescu, L. Davi, P. Larsen, A. R. Sadeghi,
S. Brunthaler, and M. Franz, “Readactor: Practical code randomization
resilient to memory disclosure,” in 2015 IEEE Symposium on Security
and Privacy, May 2015, pp. 763–780.

[7] M. Backes, T. Holz, B. Kollenda, P. Koppe, S. Nürnberger, and J. Pewny,
“You can run but you can’t read: Preventing disclosure exploits in
executable code,” in Proceedings of the 2014 ACM SIGSAC Conference
on Computer and Communications Security. ACM, 2014, pp. 1342–
1353.

[8] K. Z. Snow, F. Monrose, L. Davi, A. Dmitrienko, C. Liebchen, and A. R.
Sadeghi, “Just-in-time code reuse: On the effectiveness of fine-grained
address space layout randomization,” in Security and Privacy (SP), 2013
IEEE Symposium on, 2013, pp. 574–588.

[9] P. Larsen, S. Brunthaler, L. Davi, A.-R. Sadeghi, and
M. Franz, “Automated software diversity,” Synthesis Lectures
on Information Security, Privacy, and Trust, vol. 10,
no. 2, pp. 1–88, 12/22; 2016/09 2015. [Online]. Available:
http://dx.doi.org/10.2200/S00686ED1V01Y201512SPT014

[10] A. Gupta, J. Habibi, M. S. Kirkpatrick, and E. Bertino, “Marlin: Mitigat-
ing code reuse attacks using code randomization,” IEEE Transactions on
Dependable and Secure Computing, vol. 12, no. 3, pp. 326–337, 2015.

[11] S. Crane, S. Volckaert, F. Schuster, C. Liebchen, P. Larsen, L. Davi,
A.-R. Sadeghi, B. D. Sutter, and M. Franz, “It’s a trap: table
randomization and protection against function-reuse attacks,” in
22nd ACM SIGSAC Conference on Computer and Communications
Security, Proceedings. ACM, 2015, pp. 243–255. [Online]. Available:
http://dx.doi.org/10.1145/2810103.2813682

[12] L. Davi, A.-R. Sadeghi, D. Lehmann, and F. Monrose, “Stitching the
gadgets: On the ineffectiveness of coarse-grained control-flow integrity
protection,” in 23rd USENIX Security Symposium (USENIX Security 14),
2014, pp. 401–416.

[13] R. Strackx, Y. Younan, P. Philippaerts, F. Piessens, S. Lachmund, and
T. Walter, “Breaking the memory secrecy assumption,” in Proceedings
of the Second European Workshop on System Security, ser. EUROSEC
’09. New York, NY, USA: ACM, 2009, pp. 1–8. [Online]. Available:
http://doi.acm.org.ezproxy.auckland.ac.nz/10.1145/1519144.1519145

[14] E. Perla and M. Oldani, Stairway to Successful Kernel Exploitation, ser.
A Guide to Kernel Exploitation. Boston: Syngress, 2011, ch. 3, pp.
47–99.

[15] Y. Wang, M. Li, H. Yan, Z. Liu, J. Xue, and C. Hu, “Dynamic binary
instrumentation based defense solution against virtual function table
hijacking attacks at c++ binary programs,” in 2015 10th International
Conference on P2P, Parallel, Grid, Cloud and Internet Computing
(3PGCIC), 2015, pp. 430–434.



COMPUTER SCIENCE 725 2016SC 6

[16] J. Seibert, H. Okhravi, and E. Söderström, “Information leaks without
memory disclosures: Remote side channel attacks on diversified
code,” in Proceedings of the 2014 ACM SIGSAC Conference
on Computer and Communications Security, ser. CCS ’14. New
York, NY, USA: ACM, 2014, pp. 54–65. [Online]. Available:
http://doi.acm.org.ezproxy.auckland.ac.nz/10.1145/2660267.2660309


